Connection between multilayer perceptrons and regression using independent component analysis
نویسندگان
چکیده
The data model of independent component analysis (ICA) gives a multivariate probability density that describes many kinds of sensory data better than classical models like Gaussian densities or Gaussian mixtures. When only a subset of the random variables is observed, ICA can be used for regression, i.e. to predict the missing observations. In this paper, we show that the resulting regression is closely related to regression by a multi-layer perceptron (MLP). In fact, if linear dependencies are 4rst removed from the data, regression by ICA is, as a 4rst-order approximation, equivalent to regression by MLP. This theoretical result gives a new interpretation of the elements of the MLP: The outputs of the hidden layer neurons are related to estimates of the values of the independent components, and the sigmoid nonlinearities are obtained from the probability densities of the independent components. c © 2002 Elsevier Science B.V. All rights reserved.
منابع مشابه
Efficient estimation of multidimensional regression model using multilayer perceptrons
This work concerns the estimation of multidimensional nonlinear regression models using multilayer perceptrons (MLPs). The main problem with such models is that we need to know the covariance matrix of the noise to get an optimal estimator. However, we show in this paper that if we choose as the cost function the logarithm of the determinant of the empirical error covariance matrix, then we get...
متن کاملEfficient training of multilayer perceptrons using principal component analysis.
A training algorithm for multilayer perceptrons is discussed and studied in detail, which relates to the technique of principal component analysis. The latter is performed with respect to a correlation matrix computed from the example inputs and their target outputs. Typical properties of the training procedure are investigated by means of a statistical physics analysis in models of learning re...
متن کاملAn Ensemble Learning Approach to Nonlinear Independent Component Analysis
Blind extraction of independent sources from their nonlinear mixtures is generally a very difficult problem. This is because both the nonlinear mapping and the underlying sources are unknown, and must be learned in an unsupervised manner from the data. We use multilayer perceptrons as nonlinear generative models for the data, and apply Bayesian ensemble learning for optimizing the model. In thi...
متن کاملICA as a preprocessing technique for classification∗ V.Sanchez-Poblador,
In this paper we propose the use of the independent component analysis (ICA) [1] technique for improving the classification rate of decision trees and multilayer perceptrons [2], [3]. The use of an ICA for the preprocessing stage, makes the structure of both classifiers simpler, and therefore improves the generalization properties. The hypothesis behind the proposed preprocessing is that an ICA...
متن کاملneuralnet: Training of Neural Networks
Artificial neural networks are applied in many situations. neuralnet is built to train multi-layer perceptrons in the context of regression analyses, i.e. to approximate functional relationships between covariates and response variables. Thus, neural networks are used as extensions of generalized linear models. neuralnet is a very flexible package. The backpropagation algorithm and three versio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 50 شماره
صفحات -
تاریخ انتشار 2003